Федеральное государственное бюджетное образовательное учреждение высшего образования

"Дальневосточный государственный университет путей сообщения" (ДВГУПС)

УТВЕРЖДАЮ

Зав.кафедрой (к602) Электротехника, электроника и электромеханика

Скорик В.Г., канд. техн. наук, доцент

16.06.2021

РАБОЧАЯ ПРОГРАММА

дисциплины Электротехника и электроника

для специальности 23.05.03 Подвижной состав железных дорог

Составитель(и): ст.преподаватель, Моисеева О.В.; к.т.н., Зав.кафедрой, Малышева О.А.

Обсуждена на заседании кафедры: (к602) Электротехника, электроника и электромеханика

Протокол от 16.06.2021г. № 9

Обсуждена на заседании методической комиссии учебно-структурного подразделения: Протокол от 15.06.2021~г. № 10

	·
	Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС	
2023 г.	
	рена, обсуждена и одобрена для ном году на заседании кафедры роника и электромеханика
	Протокол от 2023 г. № Зав. кафедрой Скорик В.Г., канд. техн. наук, доцент
	Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС	
2024 г.	
	рена, обсуждена и одобрена для ном году на заседании кафедры роника и электромеханика
	Протокол от 2024 г. № Зав. кафедрой Скорик В.Г., канд. техн. наук, доцент
	Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС	
2025 г.	
	рена, обсуждена и одобрена для ном году на заседании кафедры роника и электромеханика
	Протокол от 2025 г. № Зав. кафедрой Скорик В.Г., канд. техн. наук, доцент
	Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС	
2026 г.	
	рена, обсуждена и одобрена для ном году на заседании кафедры роника и электромеханика
	Протокол от 2026 г. № Зав. кафедрой Скорик В.Г., канд. техн. наук, доцент

Рабочая программа дисциплины Электротехника и электроника

разработана в соответствии с Φ ГОС, утвержденным приказом Министерства образования и науки Российской Федерации от 27.03.2018 № 215

Квалификация инженер путей сообщения

Форма обучения заочная

ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость 8 ЗЕТ

Часов по учебному плану 288 Виды контроля на курсах:

в том числе: экзамены (курс) 2 контактная работа 30 зачёты (курс) 2

контиктная работа за контрольных работ 2 курс (2)

самостоятельная работа 245

часов на контроль 13

Распределение часов дисциплины по семестрам (курсам)

Курс	1	2	Итопо		
Вид занятий	УП	РΠ		Итого	
Лекции	16	16	16	16	
Лабораторные	8	8	8	8	
Практические	6	6	6	6	
В том числе инт.	8	8	8	8	
Итого ауд.	30	30	30	30	
Контактная работа	30	30	30	30	
Сам. работа	245	245	245	245	
Часы на контроль	13	13	13	13	
Итого	288	288	288	288	

1. АННОТАЦИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Линейные цепи постоянного тока. Основные методы расчет линейных электрических цепей постоянного тока. Применение законов Кирхгофа. Электрическая мощность. Электрические однофазные и трехфазные цепи синусоидального тока. Символический метод их расчета. Электрические мощности. Переходные процессы. Законы коммутации. Электромагнетизм и магнитные цепи. Элементы теории электромагнитного поля. Резонансные и частотные характеристики. Электрические измерения и приборы. Трансформаторы, электродвигатели, генераторы. Асинхронные машины. Электронные приборы, характеристики, параметры, назначение. Электронные устройства на диодах, транзисторах и тиристорах. Источники питания. Усилительные каскады. Аналого-цифровые преобразователи. Элементы цифровой электроники. Микропроцессоры и микроконтроллеры. Силовая электроника.

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
Код дис	ециплины: Б1.О.14
2.1	Требования к предварительной подготовке обучающегося:
2.1.1	Высшая математика
2.1.2	Информатика
2.1.3	Физика
2.1.4	Химия
2.1.5	Дополнительные главы математики
2.1.6	Общий курс железнодорожного транспорта
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:
2.2.1	Электромонтажная практика
2.2.2	Метрология, стандартизация и сертификация
2.2.3	Электрические машины
2.2.4	Электронная преобразовательная техника
2.2.5	Механическая часть электроподвижного состава
2.2.6	Системы и устройства электроснабжения электрифицированных железных дорог
2.2.7	Теория автоматического управления подвижным составом
2.2.8	Организация обеспечения безопасности движения и автоматические тормоза
2.2.9	Системы автоматизированного проектирования подвижного состава
2.2.10	Системы управления электроподвижным составом
2.2.11	Теория тяги поездов
2.2.12	Автоматизированные системы управления электроподвижным составом
2.2.13	Тяговые аппараты и электрическое оборудование
2.2.14	Тяговые электрические машины

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-1: Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования

Знать:

основные понятия и методы математического анализа, линейной алгебры, теории дифференциальных уравне-ний и основные алгоритмы типовых численных методов решения математических задач;

фундаментальные понятия, теории и законы физики для решения инженерных задач;

теоретические основы тра-диционных и новых разделов химии и способы их

использования при решении инженерных химических и

материаловедческих задач;

основы использования вы-числительной техники для моделирования и решения инженерных задач;

основные законы теоретиче-ской механики для решения инженерных задач в профес-сиональной деятельности;

основные законы термоди-намики и теплопередачи для решения инженерных задач в профессиональной дея-тельности; принципы автоматического управления и регулирования на подвижном составе;

методы линеаризации и ма-тематического описания ли-нейных систем;

особенности анализа нели-нейных систем.

основные понятия и методы математического анализа, линейной алгебры, теории дифференциальных уравне-ний и основные алгоритмы типовых численных методов решения математических задач;

фундаментальные понятия, теории и законы физики для решения инженерных задач;

теоретические основы тра-диционных и новых разделов химии и способы их

использования при решении инженерных химических и

материаловедческих задач;

основы использования вы-числительной техники для моделирования и решения инженерных задач;

основные законы теоретиче-ской механики для решения инженерных задач в профес-сиональной деятельности;

основные законы термоди-намики и теплопередачи для решения инженерных задач в профессиональной дея-тельности; принципы автоматического управления и регулирования на подвижном составе;

методы линеаризации и ма-тематического описания ли-нейных систем:

особенности анализа нели-нейных систем.

Уметь:

использовать фундаментальные понятия, теории и законы математики для решения инженерных задач;

использовать фундаментальные понятия, теории и законы физики для решения инженерных задач;

использовать фундаментальные понятия, теории и законы химии для решения инженерных задач;

использовать возможности вычислительной техники и применять программное обеспечение персонального компьютера для моделирования и решения инженерных задач;

использовать основные законы теоретической механики для решения инженерных задач в профессиональной деятельности; определять параметры электрических цепей постоянного и переменного тока, различать и выбирать типовые элементы электрических цепей и электрические аппараты, читать электрические схемы, использовать измерительные приборы и проводить измерения;

использовать основные законы термодинамики и теплопередачи для решения инженерных задач в профессиональной деятельности;

выполнять мониторинг прогнозирование и оценку экологической безопасности объектов железнодорожного транспорта; анализировать системы автоматического управления подвижным составом (САР);

применять методы линеаризации и математического описания линейных систем;

оценивать устойчивость и качество процессов регулирования в нелинейных САР.

Владеть:

методами математического описания и моделирования физических явлений и процессов, определяющих принципы работы подвижного состава железных дороги его систем;

опытом использования возмож-ностей вычислительной техники и применения программного обеспечения персонального компьютера для моделирования и решения инженерных задач;

основными законами и метода-ми механики;

методами физико-химического анализа;

методами экологического обес-печения производства и инже-нерной защиты окружающей среды;

методами термодинамического анализа теплотехнических уст-ройств и кузовов подвижного состава;

методами выбора электриче-ских аппаратов для типовых электрических схем систем управления; методами чтения электрических схем систем управления исполнительными машинами;

терминологией «Теории авто-матического управления»;

подходами к математическому описанию линейных систем;

основами анализа нелинейных САР.

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Примечание
	Раздел 1.						
1.1	Линейные цепи постоянного тока. Основные методы расчет линейных электрических цепей постоянного тока. Применение законов Кирхгофа. Электрическая мощность. Линейные цепи постоянного тока. Основные методы расчет линейных электрических цепей постоянного тока. /Лек/	2	2	ОПК-1	Л1.1 Л1.2Л2.1 Л2.2Л3.1 Э1	0	
1.2	Электрические однофазные и трехфазные цепи синусоидального тока. Символический метод их расчета. Электрические мощности. Переходные процессы. Законы коммутации. Электрические мощности. Переходные процессы.	2	2	ОПК-1	Л1.2 Л1.3Л2.1 Л2.3Л3.1 Э1	0	

1	<u>-</u>		T		1	1	1
1.3	Электромагнетизм и магнитные цепи. Элементы теории электромагнитного поля. Резонансные и частотные характеристики.Законы коммутации. Электромагнетизм и магнитные цепи. /Лек/	2	2	ОПК-1	Л1.2 Л1.3Л2.1 Л2.3Л3.1 Э1	0	
1.4	Электрические измерения и приборы. Трансформаторы, электродвигатели, генераторы. /Лек/	2	2	ОПК-1	Л1.1 Л1.3Л2.1 Л2.3Л3.1 Э1	0	
1.5	Электрические измерения и приборы. Трансформаторы, электродвигатели, генераторы. Асинхронные машины. /Лек/	2	2	ОПК-1	Л1.1 Л1.3Л2.1 Л2.3Л3.1 Э1	0	
1.6	Электронные приборы, характеристики, параметры, назначение. /Лек/	2	2	ОПК-1	Л1.2 Л1.3Л2.1 Л2.3Л3.1 Э1	0	
1.7	Электронные приборы, характеристики, параметры, назначение. Электронные устройства на диодах, транзисторах и тиристорах. Источники питания. /Лек/	2	2	ОПК-1	Л1.1 Л1.3Л2.1 Л2.3Л3.1 Э1	1	ситуационный анализ
1.8	Источники питания. Усилительные каскады. Аналого-цифровые преобразователи. Элементы цифровой электроники. Микропроцессоры и микроконтроллеры. Силовая электроника /Лек/	2	2	ОПК-1	Л1.3Л2.1Л3.1 Э1	1	ситуационный анализ
1.9	Сборка электрической схемы и определение показаний приборов /Лаб/	2	2	ОПК-1	Л1.1 Л1.2Л2.1 Л2.3Л3.1 Л3.2 Э1	0	
1.10	Исследование законов электрической цепи (ЭВМ) /Лаб/	2	2	ОПК-1	Л1.1 Л1.2Л2.1 Л2.3Л3.1 Л3.2 Э1	2	ситуационный анализ
1.11	Исследование разветвленной цепи переменного тока с одним источником питания (ЭВМ) /Лаб/	2	2	ОПК-1	Л1.2 Л1.3Л2.1 Л2.3Л3.1 Л3.2 Э1	2	круглый стол
1.12	Исследование трехфазной цепи при соединении нагрузки по схеме «звезда». /Лаб/	2	2	ОПК-1	Л1.2 Л1.3Л2.1 Л2.3Л3.1 Л3.2 Э1	2	ситуационный анализ
1.13	Исследование индуктивно связанных катушек /Пр/	2	2	ОПК-1	Л1.1 Л1.3Л2.1 Л2.3Л3.1 Э1	0	
1.14	Исследование машины постоянного тока в режиме генератора /Пр/	2	2	ОПК-1	Л1.1 Л1.2Л2.1 Л2.3Л3.1 Э1	0	
1.15	Исследование полупроводникового диода (ЭВМ) /Пр/	2	2	ОПК-1	Л1.1 Л1.2Л2.1 Л2.3Л3.1 Э1	0	

1.16	Изучение литературы теоретического курса /Ср/	2	60	ОПК-1	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
1.17	Выполнение контрольной работы /Ср/	2	70	ОПК-1	Л1.3Л2.1Л3.1 Э1	0	
1.18	Оформление и подготовка отчетов по ЛР /Cp/	2	55	ОПК-1	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
1.19	Самостоятельное решение задач /Ср/	2	50	ОПК-1	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
1.20	Самостоятельное решение задач /Ср/	2	10	ОПК-1	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
1.21	/Экзамен/	2	13	ОПК-1	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3Л3.1 Л3.2 Э1	0	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Размещены в приложении

6.	6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
	6.1. Рекомендуемая литература						
	6.1.1. Перечень основной литературы, необходимой для освоения дисциплины (модуля)						
	Авторы, составители	Издательство, год					
Л1.1	Ермуратский П.В., Лычкина Г.П.	Электротехника и электроника: учеб. для вузов	Москва: ДМК Пресс, 2013,				
Л1.2	Белов Н.В., Волков Ю.С.	Электротехника и основы электроники: учеб. пособие для вузов	Санкт-Петербург: Лань, 2012,				
Л1.3	В.В. Кононенко, В.И. Мишкович, В.В. Муханов, В.ф. Планидин, П.М. Чеголин; под ред. В.В. Кононенко.	Электротехника и электроника:: учебное пособие для вузов	Ростов н/Д: Феникс, , 2009,				
	6.1.2. Перечень до	полнительной литературы, необходимой для освоения дис	циплины (модуля)				
	Авторы, составители	Заглавие	Издательство, год				
Л2.1	Савилов Г.В.	Электротехника и электроника: электрон. учеб.	Москва: Кнорус, 2010,				
Л2.2	Фуфаева Л.И.	Электротехника: учеб. для сред. проф. образования	Москва: Академия, 2013,				
Л2.3	А.С. Касаткин, М.В. Немцов	Электротехника: учебник	М.: Высшая школа, 2006,				
6.1.	6.1.3. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)						
	Авторы, составители	Заглавие	Издательство, год				
Л3.1	Моисеева О.В., Малышева О.А.	Электротехника и электроника: метод. пособие по выполнению лабораторных и решению контр. работ для студ. ИИФО	Хабаровск: Изд-во ДВГУПС, 2013,				
Л3.2	Моисеева А. И., Трофимович П.Н.	Общая электротехника и электроника: метод. пособие по выполнению лаб. работ	Хабаровск: Изд-во ДВГУПС, 2016,				

6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

91 www.biblioclub.ru, www.newlibrery, www.ihfra-m.ru, www.znanium.com, www.dvqups.ru, www.library.miit.ru

6.3 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

6.3.1 Перечень программного обеспечения

Mathcad Education - University Edition - Математический пакет, контракт 410

Matlab Базовая конфигурация (Academic new Product Concurrent License в составе: (Matlab, Simulink, Partial Differential Equation Toolbox) - Математический пакет, контракт 410

Visio Pro 2007 - Векторный графический редактор, редактор диаграмм и блок-схем, лиц.45525415

Free Conference Call (свободная лицензия)

Zoom (свободная лицензия)

6.3.2 Перечень информационных справочных систем

Компьютерная справочно-правовая система "КонсультантПлюс".

7. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ) Аудитория Назначение Оснащение 120 Учебная аудитория для проведения экран, мультимедийный проектор, маркерная доска, тематические лабораторных и практических занятий, плакаты, макеты электрических цепей и электрических машин для групповых и индивидуальных консультаций, проведения лабораторных работ, лабораторные стенды "Электротехника и электроника", ПЭВМ, физические модели текущего контроля и промежуточной аттестации. электрических аппаратов, комплект учебной мебели Лаборатория основ электротехники и электромеханики, электрических и электронных аппаратов 247 комплект учебной мебели, маркерная доска, ПЭВМ, рабочие Учебная аудитория для проведения лабораторных и практических занятий, станции NI ELVIS групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория компьютерного моделирования электротехнических дисциплин 328 Учебная аудитория для проведения занятий проектор, звуковая система, интерактивная доска, компьютер с лекционного типа монитором, комплект учебной мебели, доска меловая и маркерная

унифицированные лабораторные стенды (ауд.120);

- учебно-наглядные материалы схемы, таблицы, плакаты, чертежи;
- персональные компьютеры (технические средства обучения), ауд. 332;
- мультимедийный проектор (ауд. 120).

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Для рационального распределения времени обучающегося по разделам дисциплины и по видам самостоятельной работы студентам предоставляется календарный план дисциплины, а также учебно-методическое и информационное обеспечение, приведенное в данной рабочей программе.

В процессе обучения студенты должны усвоить научные основы предстоящей деятельности, научиться управлять развитием своего мышления. С этой целью они должны освоить различные алгоритмы мышления по изучению дисциплины «Электротехника и электроника». Алгоритмы развития мышления выстраиваются так, чтобы знания (закон, закономерность, определение, вывод, правило и т. д.) могли применяться при выполнении заданий (решении задач).

Для эффективного обучения и приобретения предполагаемых федеральным государственным образовательным стандартом навыков, умений, владений и профессиональной компетенции необходимо строго соблюдать график выполнения самостоятельной работы. Необходимым также является своевременное выполнение аудиторных лабораторных работ в соответствии с предложенным календарным планом дисциплины.

Для лучшего усвоения дисциплины рекомендуется при подготовке к практическим и лабораторным занятиям использовать литературу, указанную в списке рекомендуемых источников, а также соответствующие методические разработки ДВГУПС. Проведение учебного процесса может быть организовано с использованием ЭИОС университета и в цифровой среде (группы в социальных сетях, электронная почта, видеосвязь и др. платформы). Учебные занятия с применением ДОТ проходят в соответствии с утвержденным расписанием. Текущий контроль и промежуточная аттестация обучающихся проводится с применением ДОТ.